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Abstract

This paper compares the dynamic testability pre-
diction technique termed "sensitivity analysis" to the
static testability technique termed cyclomatic com-

plexity. The application that we chose in this em-

-- pirical study is a CASE generated version of a B-737
autoland system. For the B-737 system we analyzed,
we isolated those functions that we predict are more

prone to hide errors during system/reliability testing.
We also analyzed the code with several other well-
known static metrics. This paper compares and con-
trasts the results of sensitivity analysis to the results

of the static metrics.

I. Introduction

The adage that non-exhaustive software testing
cannot reveal the absence of errors and only their

existence is as true today as it was when Dijkstra

wrote it [4, 1]. Unfortunately, between the time then
and now, we have begun to build orders-of-magnitude

more complex systems while our testing technologies
are no more advanced. Thus the same problems that

we had in past years when testing a 1000 line program
are compounded when we apply those techniques to a

10M line program today.
We must admit that we are building software sys-

tems that are destined to be inadequately tested.

Since we know this a priori, it suggests that we should
look for techniques that aid the testing process where

the process is known to be weak. In this paper, we
discuss one such technique: a method that quantifies

the dynamic testability of a system that is undergoing
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system/reliability testing. We will then compare the
results of this technique to other metrics that are in

wide-spread use today.
Software testing is performed for generally two rea-

sons: (1) detect faults so that they can be fixed, and
(2) reliability estimation. The goal of the dynamic
testability measurement technique presented in this

paper is to strengthen the software testing process as
it applies to reliability estimation. Dynamic testabil-

ity analysis is less concerned with fault detection, even
though it is plausible that a function that is more likely
to hide faults during system testing may also be more

likely to hide faults during unit testing. Instead, dy-
namic testability analysis is concerned with a lack of
fault detection.

II. Static Software Metrics

The study of software metrics has grown out of
a need to be able to express quantitative properties

about programs. The first software metric was simply
a count of the number of lines. This was acceptable

as a way of measuring program size, but was not ap-
plicable to other software characteristics.

Software complexity is another metric that tries to
relate how difficult a program is to understand. In

general, the more difficult, the more likely that errors
wilt be introduced, and hence the more testing that
will be required. Thus it is common for developers
to relate a software complexity measurement to the

allocation of testing resources. It is our experience,

however, that software complexity is still too coarse-

grained of a metric to relate to the testing of critical
software systems, those that must fail less than once

in 109 executions (or some other large number). Thus
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even though software complexity can be useful as a
first-stab at how much testing to perform and where,
it is too coarse for assessing reliability in the ultra-

reliable region of the input space.

In this paper, we have considered 6 software met-
rics that are available in the PC-METRIC 4.0 toolkit:

(1) Software Science Length (N) (2) Estimated Soft-
ware Science Length (N^), (3) Software Science Vol-

ume (V), (4) Software Science Effort (E), (5) Cy-
clomatic Complexity (VG1), and (6) Extended Cy-
clomatic Complexity (VG2). We will briefly mention
what these metrics are; in general, any software engi-

neering text will go into more depth on these metrics
for the inquisitive reader.

Halstead [2] observed that all programs are com-
prised of operators and operands. He defined N1 to
be the number of total operators and N2 to be the
number of total operands. He defined length of a pro-

gram, N, to be:

N = NI + N_.

Halstead also has a predicted length metric, N ^ , that

is given by:

g^ = -1-lo92(m) + n2-Iog2(n2),

where nl is the number of unique operators and n2 is

the number of unique operands. Halstead has another
metric that he terms volume, V, that is given by:

V = N. log2(nl + n_).

Halstead's Effort metric, E, is given by:

E = V/L,

however most researchers use [5]:

E = v/(21.,.._lg_)

McCabe's cyclomatic complexity metric is less

based on program size (as are Halstead's measures)
and more on information/control flow:

re(g) = e - n + 2

where n is the number of nodes in the graph and e is

the number of edges, or lines connecting each node. It
is the cyclomatic complexity metric that we are more

interested in for this paper, and most importantly how

cyclomatic complexity compares to the dynamic testa-
bility measure presented in Section 3.

III. Testability Analysis

Software testability analysis measures the benefit
provided by a software testing scheme to a particu-

lar program. There are different ways to define the

"benefit" of tests and testing schemes, and each differ-
ent definition requires a different perspective on what
testability analysis produces. For instance, software

testability has sometimes been referred to as the ease
with which inputs can be selected to satisfy structural

testing criteria (e.g., statement coverage) with a given
program. With this perspective, if it were extremely
difficult to find inputs that satisfied a structural cov-

erage criteria for a given source program, then that
program is said to have "low testability" with respect

to that coverage criteria. Another view of software
testability defines it as a prediction of the probabil-
ity that existing faults wilt be detected during testing

given some input selection criteria C. Here, software
testability is not regarded as an assessment of the dif-
ficulty to select inputs that cover software structure,

but more generally as a way of predicting whether a
program would reveal existing faults during testing
according to C.

In either definition, software testability analysis is

a function of a (program, input selection criteria) pair.
Different input selection criteria choose test cases dif-
ferently: inputs may be selected in a random black-

box manner, their selection may be dependent upon
the structure of the program, or their selection may
be based upon other data or they may be based on

the intuition of the tester. Testability analysis is more

than an assertion about a program, but rather is an
assertion about the ability of an input selection cri-

teria (in combination with the program) to satisfy a
particular testing goal. The same syntactic program
may have different testabflities when presented with

different input selection criteria.
In order for software to be assessed as having a

"greater" testability by the semantic-based definition,

it must be likely that failure occurs if a fault were to
exist. To understand this likelihood, it is necessary to

understand the sequence of events that lead to soft-

ware failure. (By software failure, we mean an incor-
rect output that was caused by a flaw in the program,

not an incorrect output caused by a problem with the
environment or input on which the program is execut-

ing.) Software failure only occurs when the following
three conditions occur in the following sequence:

1. A input must cause a fault to be executed.

2. Once the fault is executed, the succeeding data
state must contain a data state error.
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3. After a data state error is created, the data state

error must propagate to an output state.

The semantic-based definition of testability pre-

dicts the probability that tests will uncover faults if
a fault exists. The software has high testability for a
set of tests if the tests are likely to detect any faults

that exist; the software has low testability for those
tests if the tests are unlikely to detect any faults that

exist. Since it is a probability, testability is bounded

in a closed interval [0,1]. In order to make a prediction
about the probability that existing faults will be de-
tected during testing, a testability analysis technique

should be able to quantify (meaning predict) whether
a fault will be executed, whether it will infect the suc-

ceeding data state creating a data state error, and
whether the data state error will propagate its incor-

rectness into an output variable. When all of the data
state errors that are created during an execution do

not propagate, the existence of the fault that trigged
the data state errors remains hidden, resulting in a

lower software testability.
Software sensitivity analysis is a code-based tech-

nique based on the semantic definition of testability;

it injects instrumentation that contains program mu-
tation, data state mutation, and repeated executions

to predict a minimum non-zero fault size [7, 13]. The
minimum non-zero fault size is the smallest probabil-

ity of failure likely to be induced by a programming

error based upon the results of the injected instru-
mentation. Sensitivity analysis is not a testing tech-

nique, and thus it does not use an oracle, and can
be completely automated (provided that the user ini-

tially tells the technique where in the code to apply

the analysis).
Software sensitivity analysis is based on approxi-

mating the three conditions that must occur before a

program can fail: (1) execution of a software fault, (2)
creation of an incorrect data state, and (3) propaga-
tion of this incorrect data state to a discernible out-

put. This three part model of software failure [9, 10]
has been explored by others, but not in the manner

in which sensitivity analysis explores it. In this paper
we examine how to apply sensitivity analysis to the

task of finding a realistic minimum probability of fall-

tire prediction when random testing has discovered no
errors.

In the rest of this section we give a brief outline of

the three processes of sensitivity analysis. To simplify

explanations, we will describe each process separately,

but in a production analysis system, execution of the

processes would overlap. As with the analysis of ran-
dom testing, the accuracy of the sensitivity analysis

depends in part on a good description of the input
distribution that will drive the software when opera-

tional (and when tested).

Before a fault can cause a program to failure, the

fault must be executed. In this methodology, we con-
centrate on faults that can be isolated to a single 10-

cation in a program. This is done because of the com-
binatorial explosion that would occur if we considered

distributed faults. A location is defined as a single

high level language statement. Our experiments to
date have defined a location as a piece of source code
that can change the data state (including input and

output files and the program counter). Thus an as-
signment statement, if, and while statement define a

location. The probability of execution for each loca-
tion is determined by repeated executions of the code

with inputs selected at random from the input dis-
tribution. An automated testability system, PISCES

[11], controls the instrumentation and bookkeeping.

If a location contains a fault, and if the location is

executed, the data state after the fault may or may not
be changed adversely by the fault. If the fault does

change the data state into an incorrect data state, we

say the data state is infected. To estimate the prob-
ability of infection, the second process of sensitivity
analysis performs a series of syntactic mutations on
each location. After each mutation, the program is

re-executed with random inputs; each time the loca-

tion is executed, the data state is immediately com-

pared with the data state of the original (unmutated)
program at that same point in the execution. If the
internal state differs, infection has taken place. And

this is recorded by PISCES and reported back to the
user.

The third process of the analysis estimates propaga-

tion. Again the location is monitored during random
tests. After the location is executed, the resulting data

state is forcefully changed by assigning a random value

to one data item using a predetermined internal state
distribution. After the internal data state is changed,

the program continues executing until an output re-
sults. The output that results from the changed data

state is compared to the output that would have re-
sulted without the change. If the outputs differ, prop-

agation has occurred and PISCES reports that back
to the user as a probability estimate.

For a test case to reveal a fault, execution, in-

fection, and propagation must occur; without tl_ese

three events occurring, the execution will not result
in failure. And for a specific fault, the product of

the probability of these events occurring is the actual

probability of failure for that fault. Each sensitiv-
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ity analysis process produces a probability estimate
based on the number of trials divided by the number

of events (either execution, infection, or propagation).
The product of these estimates yields an estimate of
the probability of failure that would result when this

location contains a fault. Since we are approximating
the model of how faults result in failures, we also take
this multiplication approach when we predict the min-

imum fault size and multiply the minimum infection
estimate, minimum propagation estimate, and execu-

tion estimate for a given location. This produces the
testability of that location. We then take the location
with the lowest non-zero testability to be the testabil-

ity of the overall program.

IV. PISCES

Several proof-of-concept sensitivity analysis proto-
types were built in the early i990s. PISCES is the
commercial software testability tool that evolved from
these prototypes. PISCES is written in C++ and op-

erates on programs written in C. The recommended
platform for PISCES is a Sparc-2 with 16 mbytes of
memory, 32 mbytes of swap space, and 20 mbytes of

hard disk space. For larger C applications, the amount
of memory that PISCES needs increases, and thus we

currently are limited to running around 3,000-4,000
lines of source code at a time through PISCES. For

larger systems, we perform analysis on a part of the
code, and when that is done, we perform analysis on
another part until all of the code has received dynamic

testability analysis. This "modular approach" is how

we get results for systems larger than 4,000 SLOC.
PISCES produces testability predictions by creat-

ing an "instrumented _ copy of your program and then
compiling and executing the instrumented copy. Al-

though it is hard to determine precisely, given the
default settings that PISCES uses, the instrumented

version of your program is approximately 10 times as
large as the original source code. The instrumented
copy is then executed with inputs that are either sup-

plied in a file or PISCES uses random distributions
from which it generates inputs.

V. Dynamic Testability Results

We were supplied with a C version of a B-737 au-

topilot/autoland that had been generated by a CASE
tool; the CASE tool has been under development by

NASA-Langley and one of their vendors for several

years. We were told that as far as NASA knew, this
version of the autopilot/autoland had never failed; it
appears to be a correct version of the specification.

The version consisted of 58 functions; parameters to
the system included information such as direction of

wind, wind speed, and speed of gusts. The version we

used is not embedded in any commercial aircraft. In-
stead, the version is based on the specification of the
system that is embedded on aircraft, and hence this

code should contain most (if not all) of the function-
ality of the production aircraft system.

We should mention that the B737 source code was

approximately 3000 SLOCs, and it represents the

largest program to receive sensitivity analysis in its
entirety to date. Our results here are based on 2000

randomly generated input cases that are correlated to
the following types of landing conditions:

1. no winds at all,

2. moderate winds, and

3. extremely strong winds with high gusts.

(We think it was important to exercise three major
classes of scenarios that the system would encounter in
operation.) We should mention that we found similar
results [12] when we used a different test suite with

1000 randomly generated inputs. The total amount of

clock time that it took for PISCES analysis to run and
produce the results was 55 hours on a Sparc-2 (there
were no other major jobs running on that platform

during this time).
According to the Squeeze-Play model for testing

sufficiency for the B-737 version, sensitivity analysis
recommends 11,982,927 system level tests [8]. This
is based on the conservative testability prediction of

< 2.5E- 07 for the entire program; a conserva-

tive festability translates into a liberal estimate of the
amoun_ of needed _esting. We use a conservative testa-

bility to ensure that we are not fooled into believing
that we have done enough testing when we really have
not. A testability written as an inequality indicates
that PISCES encountered at least one location that

did not execute or propagate during analysis. One
possible quantification of this situation is to assign a
testability of 0.0, but that creates problems for fur-

ther analysis. Instead, PISCES makes a reasonable

estimate on testability and signals the singularity with

the inequality. The process for doing this as well as
the mathematics are described in the PISCES Ver-

sion 1.0 User's Maneal. (A 0.0 testability produces
an infinite amount of testing needed which is useless

to testers.) Since testing on approximately 12 mil-
lion inputs is impractical, there are other alternatives
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forincreasingthe testability;ifthesealternativesare

appliedsuccessfully,they willdecreasethe number of

testsrequired,but we willnot explainhere how that

isdone.

We now show the resultsforthe 58 individualfunc-

tionsof the B737.c system in Figures 1 and 2. As

you can see,thereare 15 functionsout of the 58 that

have a testabilityofgreaterthan 0.01.These arefunc-

tionsthat the developer/testerneed not worry over;

they appear tohave littlefaulthidingability.This in-
formationalsotellsthe developerwhich functions(the

other 43) are more worrisome (interms of hiding fwalts
at the system level of testing); by immediately isolat-

ing those functions of low testability, we gain insight
as to where additional testing resources are needed.
Note that the degree to which we consider a function
to be "worrisome" is a function of how much testing

is considered feasible.

As yon can see from the bar charts, there were many
functions of low testability. This does not say that
these functions are incorrect (recall that this program

has never failed for NASA), but rather that these func-
tions should receive special consideration during V&V.

In our tool, there are ways of decreasing the recom-
mended testing costs if the user knows that the regions
of the code where the low testabilities occur are not

hiding faults. Although such knowledge is difficult to
obtain, it does provide the user with a justifiable way

of performing code inspections and testing sufficiency.

VI. Static Metric Results

which we feelisa validquestion.In thissection,we

willtryto show how thesetwo measurement methods

differ,and what thesedifferencesmean forthe typical

testeror QA manager.

As we have shown in Section5,the B737 code had

functionsof high testabilityand lower testability.If

the readerthen considersTable I,we immediately see

that the VGI valuesforthe functionsof B737 never

exceeded 7,and forVG2, the functionsneverexceeded

10. According tothe cyclomaticcomplexitymeasures,
all of these functions are labeled as "not complex;"

however sensitivity analysis has found that many of
these functions are more likely to hide faults during

testing than McCabe's numbers might suggest.

Our interpretation for why this is true is simply
how the two metrics view a program; sensitivity anal-

ysis is based on the semantic meaning of the program,
whereas cyclomatic complexity is based on an abstract
and structural view of the program. It is true that
the structural view has some impact on the seman-

tics of the program, however during system level test-

ing, we argue that the information provided by cyclo-
matic complexity is essentially useless in terms of how
much testing to perform. Thus we conclude that for

unit testing, cyclomatic complexity is an easy means
of attaining a feeling for how good the structure of

the program is (essentially as a "spaghetti" code type

of measure), however for critical systems, we contend
that the semantic perspective on testability provided

by sensitivity analysis is far more valuable. Sensitiv-

ity analysis costs more, but the value added is also
increased.

This section provides several sets of data that we
collected from the B737 source code when we ran it

through a commercial metrics package with the de-

fault settings. Table 1 and Table 2 display the results
that were attained by running PC-METRIC 4.0 [5].

VII. Comparison of Results

Some software researchers and practitioners have

equated testability with McCabe's cyclomatic com-

plexity or some other static metric. We contend that
such static measures do not capture the dynamic, data

dependent nature that is fundamental to testing and

our analysis of the effectiveness of testing.
In 1990, we introduced both a new definition of

testability and a new method for measuring testability
based on our definition. Still, we are frequently asked
how our definition compares to cyclomatic complexity,

VIII. Conclusions

We contend that the preliminary results of experi-

ments in software sensitivity are sufficient to motivate
additional research into quantifying sensitivity analy-

sis [13, 6]. Not only do we think that this technique
may hold promise in assessing critical systems, but in
Hamlet's award winning IEEE Software paper [3] and
The National Institute of Standards and Technology's

report on software error analysis [14], sensitivity anal-

ysis is acknowledged as a technique that should be
further explored for its potentially enormous impact

on assessing ultra-reliable software.

Although the subprocesses of sensitivity analysis
will in all likelihood require minor revisions as more is
learned about fault-based analysis, the ideas that mo-

tivate sensitivity analysis dispute the contention that
software testing is the only method of experimentally
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Procedure N N ^ V E VG1 VG2

LIMITER 37 46 145 2186 3 3

LI]V[_IS0 59 72 259 4001 3 3

ONED 137 156 714 25760 3 7

INTEGRATE 45 57 188 1642 3 3

FOLAG 43 68 186 2243 2 2

WASHOUT 53 72 233 3215 2 2

STATE 17 24 56 329 1 1
EZSWITCH 62 113 301 4694 2 3

KOUNT 66 71 290 3508 4 4

MODLAG 130 185 701 16964 2 3

MODLAG_I 108 76 482 7706 7 7

MODLAG-2 35 64 149 1772 2 3

MODLAG.3 68 82 368 5263 3 3

DZONE 22 40 84 603 1 1
AUTOPILOT 276 610 1842 25716 2 2

MODE 172 323 1016 5166 1 1

MODES_2 178 351 1072 7309 1 1

MODE1 139 209 763 6940 1 10

MODE2 120 210 663 8948 1 8

CALC_GSTRK 120 134 605 9837 6 8
MODE3 109 168 576 7615 1 7

THROT 73 144 368 1432 1 1
ATHROT 180 310 1072 21174 5 7

PRE..FLARE 79 168 418 4840 2 2

VER_SINE 29 57 121 605 1 1

WIND_SHEAR 99 151 512 6763 1 1

SPEEDC 18 36 67 320 I 1

AFTLIM 58 97 273 3926 3 6
EPR_GAIN 43 72 189 2302 2 2

LONG_x 111 242 620 2391 I 1
LONGAP 226 399 1408 28817 3 3

CALC-HR 15 28 52 227 1 1

FLARE.CONTROL 135 185 728 12557 5 5

CALC-HDEH 39 72 171 1485 2 2

PRE..FLAHE_LONG 98 185 528 7332 2 2

IN_ON_BEAM 39 71 171 1225 2 2

GSE.ADJ 37 67 160 1270 1 1

BEFORE_GSE 51 96 240 2657 1 2
BANK_AD3 17 33 61 457 1 1

PITCH..AD3 39 81 176 1491 2 2

CAS..ADJ 25 53 102 657 1 I

LATERAL 115 270 656 2394 I 1
LATAP 192 362 1173 19388 2 2

LOC_ERROR 78 128 390 4095 2 2

CROSS_VEL 18 36 67 320 1 I

LOCCMD 76 128 380 5510 2 2

LOCINT 46 101 219 1884 1 2

LOCCF 78 117 383 4521 4 4

CROSSTHADJ 33 71 145 957 2 2

B ANK 90 156 469 5894 3 4

PHICMDFB 83 145 426 5830 2 3

RtoA.XFD 103 191 559 7847 2 2

CALC_PSILIM 57 76 254 2898 3 3

SPOILER 51 81 231 2391 2 2

AIL_CMD 97 169 513 5287 4 4

RUDDER_CMD 75 145 385 3751 3 3

OUTERLOOPS 39 69 169 650 1 I

AUTOOL 69 117 339 3386 3 4

Table h Software Science Length (N) Estimated Software Science Length (N ^), Software Science Volume (V),
Software Science Effort (E), Cyclomatic Complexity (VG1), and Extended Cyclomatic Complexity (VG2) for
B737.c
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Metric Score

Software Science Length (N): 4707
Estimated Software Science Length (N^): 4107
Software Science Volume (V): 42147
Software Science Effort (E): 7963380
Estimated Erroxs using Software Science (B^): 13
Estimated Time to Develop, in hours (T^): 123
CyclomaticComplexity(VG1): 70
ExtendedCyclomaticComplexity(VG2): III
AverageCyclomatlcComplexity: 1
AverageExtendedCyclomaticComplexity: 1
Average of Nesting Depth: 1
Average of Average Nesting Depth: 0
LinesofCode (LOC):
PhysicalSourceStruts(PSS):
LogicalSourceStruts(LSS):
Nonexecutable Statements:
Compiler Directives:
Number of Comment Lines:
Number of Comment Words:
Number of Blank Lines:
Number of Procedures/b'hnctions:

3312
2683
569
861
9
1384
1985
629
58

Table 2: Summary ofStaticMetric Scores

quantifying software reliability. We believe that dy-
namic testability anMysis is a new form of software

validation, because it is quantifying a semantic char-
acteristic of programs. We cannot guarantee that sen-

sitivity analysis will assess reliability to the precisions
required for life-critical avionics software, because as
we have pointed out, low testability code can never be

tested to any threshold that would strongly suggest
that faults are not hiding. However, we do think it

is premature to declare such an assessment impossible
for all systems, and we feel that this topic deserves
attention both from the avionics community as well

as the software engineering and testing communities.

This experiment demonstrates important differ-
ences between static and dynamic analysis of how

much testing is required. Admittedly, dynamic infor-
mation is far more expensive to attain; but for the

additional cost, the precision derived we feel is justi-
fied. This expense comes mainly from the fact that

the input space and probability density function are
also considered when assessing how much testing is

necessary, not only the structure of the code. And
this expense is in computer time, not human time.

We have felt that static software metrics are too

assumption-based to be useful for predicting how to

test critical systems. For this reason, we developed a

new perspective on testability, a new way of measuring
that definition, and commercialized a tool to perform

the measurement.
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Figure 1: Testing needed given "raw" testability score for autoland module.
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Figure 2: Function testabilities for autoland.
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Figure 3: More function testabllities for autoland.
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Achieving vs. Assessing Quality

• Quality is a "buzzword" that everyone uses, but in
software quality there are two distinct issues that
must be addressed:

- Achieving quality is the role of fife-cycle phases such as: design,
requirements, coding.

- Assess/rig quality is the role of testing and V&V.

• It may be more difficult to assess quality than it is
to achieve it, which is very counter-intuitive.
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Assessment if Our Business

• We then are interested in software assessment

techniques that will provide an extra confutence not

directly available from testing that the code is

reliable.

• Type of Software that we are concerned with:

- Critical

- Has not failed since its last modification, however we have not
exhaustively tested it, nor have we any proof that it is correct.
All that we do have is knowledge that it has not failed during

recent testing/usage.

- The testing that has been performed has been with a t/ny
proportion of the potential input space that this system will
encounter in use.

©c_a _,asTC_

Theoretical Barriers to Exhaustive

Testing

• from [Manna and Waidinger '78]

- "We can never be sure that the specifications are correct"

- "No verification system can verify every correct program"

- "We can never be certain that a verificafios system is correct"

• Therefore we must shift from a "deduction" to a

"seduction" [Beizer '90].
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Difference between Testing and
Testability

• Testing is def'medwith respect to some "authority"
that asserts whether an output is correct.

• Testability says nothing about correctness, but
rather the likelihood of incorrect output occurring.

• This is a fundamental difference that needs to be
understood.

Balls and Urn

• Testing can be viewed as selecting different colored
balls from an urn where:

- Black ball = input on which program fails.

- White bali : input on which program sscet_ls.

• Only when testing is exhaustive is there an
"empty" urn.

Um
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Relating the PDF to Ball Density

.5

.1

! 2 tqm valms

Scenario 1 : A Program that

Always Fails

_0000000000

000000000
00000000

0000000

• This urn represents a program that fails on every
possible input i.e., a probability of failure of 1.0.
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Scenario 2 : A Correct Program

, J

 \oooooooooo//
QQQQQQQQ©
QQQQQQQQ
QQQQQQQ

• This urn represents a program that succeeds on
every possible input i.e., a probability of failure of
0.0.

Scenario 3: A Typical Program

XOQQQQQQQQO
QQQOQQQQQ
_QQ_QQQD
QQQQQQQ

• This urn represents virtually all software in use
today.

SEW Proceedings 358 SEL-93-003



V(G) = # of regions
or

V(G) = L- N +2P
where:

L = # of links
N = # of nodes
P = disconnected parts

Traditional Definition of Software
Testability

• Definition: the ability of a system to be easily and

thoroughly tested, where thoroughly means that a

particular coverage metric is achieved (e.g. statement

coverage, branch coverage).

• Based on the weak assumption that covering code means

no faults remaining.

• Example: MeCabe's Cyclomatic Complexity Metric

[IEEE Transactions on Software Engineering, 1976].

V(G)=S

Our Definition of Software
Testability

• _fia_a: a pred_t_n of the probability

that existing faults will be revealed during

testing according to some testing scheme D.

(D is some input representation)

• If there is a fault at a particular location,

how likely is it you _ see the fault as a

failure during testing according to D.

• If faults are unh'kely to cause faBures then
is obvious that the fault wm be difficult to

detect during testing.
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Why Our Testability Def'mition?

• Ideally, we wish to be in the state of the tester's
utopia.

• We need some way of measuring how close we are
to that situation.

• A metric such as McCabes does not allow us that

ability.

How Testability Can Affect the
Balls and Urn: Ball Stringing

• Fault size represents the number of inputs that
cause failure for some specific fault.

• The following urn represents five faults in the
program, each of size one.

@QQQQQQQQO
Q_QQQQ_o_O/QQ_OQ_D_

•
C copyrii_t l_y&it_r Ceelp_-ati_ I
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Ball Stringing (cont.)

• This urn has five inputs that cause failure that are
all caused by one fault in the program.

• Thus, this fault is of sizef'n,e.

Testability and Balls and Urn

•Testabi]ity can be viewed as an assessment of how
the black balls (if any) are distributed throughout
the urn.

• With high testability, any string of black balls is

long.

• With/ow testability, any string of black balb is
short.

High: Shortest string is 4 Low: Lon_mt _lring is 2

_O Q D_Q_.Q Q QO.O /

?o_"N #Y
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Example of Hiding Fault

_-7 x=x-l(x=x+l)

x= x div3NO0

,ut_ wr#e (x)

How Will We Predict the "Coloring"

and "Stringing" Within the Urn?

• Use lower level of code abstraction than McCabe.

• Use mutation analysis techniques.

• Approximate all 3 conditions of the fmult/fail_re
model

• Increase error classes considered beyond those

generally considered by fault-based/error-based
techniques.

• Use dynamic code analysis instead of static code
analysis.
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The Basis for True Testability: The
Fault/Failure Model

• Model published by Hamlet, Morell, Richardson
(RELAY) at different times in the 80s.

• For a fault to result in failure the following three
conditions are necessary and suj_'wiemt:

- Faults must be execmed (reachabilily_

- Data state must become infected (meceldty)_

- Infected data state mast propagate te am m_mt _riabk

(sumciency).

• If any one of these conditions does not occur for a

particular input and a particular fault, the fault
does not cause a failure.

There are Three Urns

• Actual (or Conceptual): can never fully see this urn
unless testing is exhaustive.

• Estimated: from testing; a poor approximation in

generaL

• Predicted: from sensitivity analysis; rely predicts
how any black balls are strung/dispersed.

• Note that all three urns are based on the same

input distribution.
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What is this Mess??

• For years, researchers in reliability/testing have
asked the question: "What is the probability thatthis
program will fail?." Now for a program that hasn't
yet fated, this is a very difficult question. If the
program would at least fail x times, we could
roughly say that the probability of failure is x/N.

• This immediately suggests a problem with testing, in
the case where the program has not faile_

• So we decided to ask a different question: "What is

the probability that this program can't fail even if the
program is incorrect?." This is the purpose for the
predicted minimum failure probability.

©¢epyr_ l_J_,asT_
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B737.c Experiment

• Source code generated with a NASA-Langley
CASE tool, ASTER.

• 3,000-4,000 source lines, 58 functions.

• Auto-Pilot-Auto-Land system.

• Discrete-event simulation; no real-time.

• 2,000 randomly generated inputs
- no winds at all

- moderate winds

- extremely strong winds with high gusts

• 55 hours for dynamic analysis, Sparc-2.
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Results Comparing Dynamic
Testability to Cyclomatic

Complexity.
• 15 of 58 functions were of "high" testability.

• Several of the remaining functions, although
of quite low testability, were exhaustively
testable.

• All 58 functions had cyciomatic complexity
values in the <10 range.

• Since cyciomatic complexity only partially
estimates the 1st condition in the fault/failure

model (no pdf), it is unable to predict the
"chaining" within the urn.
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